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Abstract. Hat problems are a staple in recreational mathematics. Usually

these problems involve people with hats and they can see everyone else’s hats
but theirs, or participant 1 only seeing participant 2’s hat, participant 2 seeing

only participant 3’s hat and so on, or people stand in a circle and can only

see the hats of the people standing immediately next to them. These three
situations can be represented by a graph that we call a sight graph. For

example, the first case above would be a complete graph. Many papers prior

have explored hat problems with differing sight graphs and this continues such
tradition. We prove that for a sight graph of Km,n and three hat colors, then

the number of guaranteed answers is
⌊
min(m,n)

2

⌋
. A similar problem is the

Line of Sages problem, presented by Tanya Khovanova [1]. We explore the

generalized version of varying number of colors and people and we have shown
that for any number of colors and three people, there is a strategy to guarantee

two correct answers.

1. Introduction

In general, hat problems involve people who are wearing hats of different col-
ors but are not able to see their own hat. In one way or another, each par-
ticipant will try to guess their own hat color based on some information given.
The variety comes in the goals and knowledge of each participant. There are
hat problems where the people wearing hats attempt to maximize the correct an-
swers most of the time. Others require that no one participant will answer in-
correctly given that they are able to pass. By nature, some hat problems require
probabilistic strategies, whereas some require deterministic strategies. The web-
site, https://www.cs.umd.edu/ gasarch/TOPICS/hats/hats.html, is a compilation
of various papers on hat problems.

There are two types of hat problems that this paper focuses on. First are a set of
hat problems where the people who are wearing hats can see other people’s hats but
cannot see their own. Which participant can see who can vary. The sight of each
participant can be represented by a graph whose vertices represent each participant
and an edge shows that the two people can see each other. This is called a sight
graph. There has been some work on hat problems with a variety of sight graphs
like in [2]. Our work continues this tradition. Finally, we generalize of the Line of
Sages problem, proposed by Tanya Khovanova [1].
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2. Hat Problems on Bipartite Graphs

2.1. Setting. The general type of hat problem considered in this section is one
where n participants are wearing hats. Each participant cannot see their own hat.
Then, some adversary then paints each hat one of k colors. This adversary will be
referred to as the mad hatter. After the hats are painted, the mad hatter then asks
the participants to all simultaneously “guess” the color of the hat they are wearing.
And the group of participants will earn points corresponding to the number of
correct guesses. The problem is then: Which strategy can guarantee the most
amount of points?

A keyword in the problem statement is “guarantee” which means that any strat-
egy that involves a random guess is automatically ruled out, as such a strategy does
not guarantee anything. Thus, for an individual participant, a strategy dictates ex-
actly how they guess based solely on the colors of the hats of the other participants.
That is, given a strategy, an individual participant’s “guess” is determined exactly
by the colors of the hats of the other participants. In a sense, the word “guess”
is not used in the common way here. The strategy for the whole group, then, is a
collection of these individual strategies.

This problem may be varied by changing the number of participants n, and
the number of colors k. But, the mad hatter may also change which participants
each participant gets to see. For example, suppose the participants are Ada, Bob,
Charlie, and Meir. The mad hatter may permit each participant to see every other
participant, or the mad hatter may split the group into pairs and let the pairs only
see each other. In the perspective of Alice, the first case corresponds to Alice being
able to see Bob, Charlie, and Meir. The second case corresponds to Alice and Bob
being able to see only each other, and Charlie and Meir being able to see only each
other. These are not the only possible cases for these 4 participants. Who can see
whom can be denoted using a graph, now aptly named a sight graph:
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(a) First Case (b) Second Case

Figure 1. Example Sight Graphs

A sight graph in itself implies the number of participants. And so, a hat problem,
as we will consider, is completely defined by a sight graph G, and a number of colors
k. Strategies are then created under this context. And so the problem generalizes
to: Given a sight graph G, and a number of hat colors k, which strategy can
guarantee the most amount of points? Or less specifically, what is the most points
can a strategy guarantee?

2.2. Notation. Notation can be introduced to formalize the above setting.

Notation 2.2.1. A hat problem is a tuple (G, k) where G = (V,E) is a simple,
undirected graph, and k is a positive integer. We assume that if G has n vertices,
then V = {1, 2, . . . , n}.

Consider a hat problem (G = (V,E), k). V can be interpreted as the set of
participants wearing hats. E lists which participants can see each other, and k is
the number of different hat colors. The rest of the notation is defined within the
context of a fixed hat problem (G = (V,E), k), and we let n = |V |.

Notation 2.2.2. A configuration, c, is a function from V to Zk. With the as-
sumption that V = {1, 2, . . . , n}, equivalently, a configuration c is a member of Zn

k .
Further, C is the set of all configurations.

A configuration c can be interpreted as one possible way in which the mad hatter
paints the hats of the participant. As a function, it takes in a participant v ∈ V ,
and outputs the color of their hat (i ∈ Zk) which is one of k possible colors.

Notation 2.2.3. An individual strategy for a v ∈ V , sv, is a function from Zdeg(v)
k

to Zk. A strategy for the whole group, or simply a strategy, is a tuple of strategies
s̄ = (s1, s2, . . . , sn) = (sv : v ∈ V ). S is the set of all strategies.

An individual strategy dictates what an individual participant guesses based on
the hat colors of the participant’s neighbors in the sight graph. The input for an
individual strategy takes in a tuple of colors. This tuple of colors dictates the hat
colors of the participant’s neighbors arranged from least to greatest, as we assume
that V = {1, 2, . . . , n}. The output of an individual strategy is a color, which is
interpreted as the guess of the participant.

Definition 2.2.4. Consider a v ∈ V . Let {v1, v2, . . . , vm}, where v1 < v2 < · · · vm,
be the set of vertices adjacent to v in G. Further, let s̄ = (sw : w ∈ V ) be a strategy.
For any configuration c ∈ C , define sv{c} = sv(c(v1), c(v2), . . . , c(vm)) and define
s̄{c} = (sw{c} : w ∈ V ). Next, define sv[c] = 1 if sv{c} = c(v) and sv[c] = 0

otherwise. Further define, s̄[c] =
∑
v∈V

sv[c]. Finally define:

s̄[C ] = min
c∈C

s̄[c]
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Given a strategy s̄ and a configuration c, the above definition notates sv{c} in
a way that can be interpreted as the guess of participant v under the hat color
configuration c. Extending this, s̄{c} is a tuple representing the guesses of each
participant under the configuration c. Further, the definition also gives sv[c] which
can be interpreted as being 1 when participant v guesses correctly, and 0 when
participant v guesses incorrectly. And so, s̄[c] is the number of correct guesses the
strategy s̄ yields given configuration c. Then, s̄[C ] is the number of correct guesses
that the strategy s̄ guarantees. With this notation, we can define more precisely
the problem stated above.

Definition 2.2.5. Given a hat problem (G, k), then HAT(G, k) is defined as:

HAT(G, k) := max
s̄∈S

min
c∈C

s̄[c] = max
s̄∈S

s̄[C ]

And so, HAT(G, k) is the answer to the question: given the sight graph G, and
k hat colors, what is the most points can a strategy guarantee?

2.3. Preliminary Results. Many values of HAT is known. In Butler et. al [2]
alone, we find that HAT(Km, k) = ⌊m/k⌋, where Km is the complete graph of m
vertices, HAT(G, 2) is the maximal matching of G (that is the maximum amount
of 2-cliques in G), and that HAT(T, k) = 0 for k ≥ 3, where T is a tree graph. A
principle implicitly used by Butler et. al is that if a graph G contains independent
subgraphs G1, G2, . . . , Gm, then:

HAT(G, k) ≥ HAT(G1, k) + HAT(G2, k) + · · ·+HAT(Gm, k)

The proof of this principle is notationally heavy but conceptually intuitive. Infor-
mally put, the participants in Gi can perform the strategy that yields HAT(Gi, k)
for 1 ≤ i ≤ m, independent of the other participants in the other subgraphs. Such
a strategy would then yield HAT(G1, k) + · · · + HAT(Gm, k), and so, HAT(G, k)
must be at least that sum.

Beyond this principle, the key result used for the bipartite case is one found by
Witold Szczechla [3] namely:

Theorem 2.3.1. Denote the cycle graph of n vertices to be Cn. HAT(Cn, 3) = 1
if n is divisible by 3 or n = 4. Otherwise, HAT(Cn, 3) = 0.

2.4. Primary Result. In keeping with standard notation, we denote Km,n =
(V = Vm ⊔ Vn, E) to be a complete bipartite graph with m being the size of one
bipartition, and n the size of the other. And, we assume without loss of generality,
V = {1, 2, . . . ,m,m+1, . . . ,m+n}. Finally, we also assume that Vm = {1, 2, . . . ,m}
is one bipartition, and Vn = {m+ 1,m+ 2, . . . ,m+ n} is the other.

Theorem 2.4.1. HAT(Km,n, 3) =

⌊
min(m,n)

2

⌋
Proof. Without loss of generality, let m ≤ n. First, note that taking two vertices
from Vm and two from Vn, as well as the edges between those vertices, yields
a subgraph isomorphic to the 4-cycle. And since m ≤ n, we can find at least
⌊m/2⌋ independent 4-cyclic subgraphs. Combining the previous theorem, and the
aforementioned principle, we see that HAT(Km,n, 3) ≥ ⌊m/2⌋.

And thus, it suffices to prove that HAT(Km,n, 3) ≤ ⌊m/2⌋. And so, consider
an arbitrary strategy s̄ = (s1, . . . , sm+n). Let c0 be any configuration in which
c0(i) = 0 for all i ≤ m. Note that, because the graph is bipartite, sj{c0}, for
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j > m, does not change for any choice of such c0. Less formally, c0 is an arbitrary
configuration in which all participants in Vm wears hat color 0. Thus, the guesses
of the participants in Vn is fixed for any such configuration.

In a similar manner, let c1 be any configuration in which c1(i) = 1 for all i ≤ m.
And we can again conclude that sj{c1} does not change for any such choice of
c1 for j > m. Now, for any j > m, there is a member of Z3 which is not in
{sj{c0}, sj{c1}}. Let such a member be aj . Now, define c′0 and c′1 as follows,
c′0(j) = c′1(j) = aj for j > m, and c′0(i) = 0, c′1(i) = 1 for i ≤ m. And thus, by
construction, sj [c

′
0] = sj [c

′
1] = 0. Therefore, s̄[c′0] is the number of i ≤ m such that

si[c
′
0] = 1, or equivalently si{c′0} = 0. Likewise, s̄[c′1] is the number of i ≤ m such

that si[c
′
1] = 1, or equivalently si{c′1} = 1.

Furthermore, since c′0(j) = c′1(j) for j > m, then si{c′0} = si{c′1}. Again, less
formally, since the participants in Vn wear the same color of hats in c′0 and c′1, then
the guesses of the participants in Vm are the same for both configurations. Suppose
there are at least ⌊m/2⌋ + 1 of i ∈ {1, . . . ,m} such that si{c′0} = si{c′1} = 0,
then there is at most ⌊m/2⌋ of i ∈ {1, . . . ,m} such that si{c′0} = si{c′1} = 1.
Thus, in this case, s̄[c′1] ≤ ⌊m/2⌋. In the other case in which, there is at most
⌊m/2⌋ of i ∈ {1, . . . ,m} such that si{c′0} = si{c′1} = 0, then s̄[c′0] ≤ ⌊m/2⌋.
And so, in any case, there is a configuration c, for which s̄[c] ≤ ⌊m/2⌋. Our
choice of s̄ was arbitrary, and thus, for any strategy s̄, then s̄[c] ≤ ⌊m/2⌋. Thus,
HAT(Km,n, 3) ≤ ⌊m/2⌋. □

2.5. An illustrative example. For the sake of clarity, we will demonstrate the
proof above applied to the more concrete case of the hat problem on K4,5 and 3 hat
colors. To make it even more concrete, let’s call these three colors Red, Green, and
Blue. Now, the previous theorem gives us that HAT(K4,5, 3) = ⌊min(4, 5)/2⌋ =
⌊4/2⌋ = 2. So, to begin, we will first show that there exists a strategy that guar-
antees two correct answers.

We can find two independent 4-cycles in K4,5, and by applying the result of
Theorem 2.3.1, each of the two independent 4-cycles has a strategy to guarantee
one correct answer. Thus, in total, we can guarantee two correct answers.

Figure 2. Two independent 4-cycles in K4,5

Now, we want to prove that no strategy can guarantee more than 2 correct
answers. In the proof of Theorem 2.4.1, we show that for any strategy, there is
some configuration of hat colors for which there are at most 2 correct answers.
Perhaps, this is best understood from the perspective of the mad hatter.

The mad hatter wants there to be as many wrong guesses as possible, so once
the participants come up with a strategy, she “tests” this strategy. Let’s call the
group of 4, Group A, and the group of 5, Group B. The mad hatter knows that
Group B can only see Group A and vice versa. So, if she choose that hat colors
of Group A, then, she fixes the guesses of Group B. That is, after she chooses the
colors of the hats of Group A, then no matter what hat colors are in Group B,
Group B’s guesses will stay the same.
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So, using this knowledge, she first puts Red hats on Group A and takes note of
the guesses of Group B. Let’s focus on one participant in Group B, Bob. When
Bob sees all red in Group A, he guesses “Green.” We’ll call this the Red Case. This
case corresponds to considering c0 in the proof above. Then the mad hatter puts
Blue hats on Group A and takes note of the guesses of Group B. And here, Bob
guesses “Blue.” We’ll call this the Blue Case. This case corresponds to considering
c1 in the proof above.

A A A A

B Bob B B B

Green

(a) Red Case

A A A A

B Bob B B B

Blue

(b) Blue Case

Figure 3. The Red Case and the Blue Case

In either the Red Case or the Blue Case, Bob does not guess the color Red.
Recognizing that Bob does not guess Red corresponds to aj (more appropriately
aBob) in the above proof. So, the mad hatter decides to put a Red hat on Bob.
And just as she can ensure that Bob guesses incorrectly in both the Red Case and
the Blue Case, she can ensure that all of group B guesses incorrectly in both cases.
This configuration she has found, to ensure that all of Group B is incorrect in both
cases, is called c′0 for the Red Case, and c′1 in the Blue case in the proof above.

Now, having colored the hats of Group B, the guesses of Group A can no longer
change. Suppose in the Red Case, more than 2 of group A guesses “Red.” Then
more than 2 of Group A is wrong in the Blue Case, as they would guess “Red” also.
In other words, at most 1 participant in group A is correct in the Blue Case. Since
all of Group B is wrong in either the Red Case or the Blue Case, then at most 1
participant among all the participants is correct. On the other hand, suppose in
the Red Case, 2 or less of group A guesses “Red.’ Then, at most 2 people in group
A is correct in the Red Case. And again, since all of Group B is wrong in either the
Red Case or the Blue Case, then at most 2 people among all the participants are
correct. Therefore, one of the Red Case or Blue Case causes the strategy to have
at most 2 correct answers. And so, no strategy can do better than guaranteeing 2
correct answers.

3. Generalizing the Line of Sages Problem

3.1. Introduction. Tanya Khovanova published a paper [1] which explored an-
other type of problem which the paper dubs the “Line of Sages” problem. The
setting for this problem varies greatly from the rather general class of hat problems
considered in the previous. So, in the Line of Sages problem, we have some number,
n people standing in a line each wearing one of k > n hat colors. No two partici-
pants will wear the same hat color, thus requiring k > n. And the line is formed in
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such a way that each participant sees, and only sees, the hats of the participants
in front of them in the line. That is, participant i in the line can see precisely the
hats of participants i+ 1, i+ 2, . . . , n.

Furthermore, instead of guessing simultaneously, the participants can guess in
any order they want. This means that not only do the participants gain information
by seeing the hats of other participants, but they also gain information from the
guesses of the participants who guess before them. However, once a color is guessed,
it may not be guessed again. The goal, as before, is to come up with a strategy
which guarantees the most correct guesses. Or, again, less specifically, what is the
most correct guesses any strategy can guarantee? In a less formal fashion as the
previous section, we notate once more to make it easier to refer to the different
variations of this problem.

Notation 3.1.1. A Line of Sages problem so described is determined by the number
of participants n and a number of hat colors k > n. Let SAGE(n, k) be the most
correct guesses any strategy can guarantee for the Line of Sages problem with n
participants and k hat colors.

Further, as we did in the previous section: The participants will be referred
to as (1, 2, . . . , n) where 1 is the backmost participant in the line, and n is the
frontmost participant. Also, the hat colors will be 0, 1, . . . , k−1. With this notation,
Khovanova found that for any n, SAGE(n, n+ 1) = n− 1.

Because k > n, the first guess can never be guaranteed to be correct. Once a
strategy is set, since there are more hat colors than participants, there is more than
one hat color the first guesser can wear even if the hat colors of the other participants
have been set. Thus, for any n and k > n, SAGE(n, k) ≤ n − 1. Another result
which has a relatively short proof, is that SAGE(2, k) = 1 for any k > 2. Suppose
the color of the participant 2’s hat is c. Then, participant 1 who sees this hat, can
guess c + 1 (mod k). Then, participant 2 can immediately deduce their hat color
from participant 1’s guess. This strategy guarantees 1 correct answer, and since,
SAGE(n, k) ≤ n− 1, then we know that SAGE(2, k) = 1.

We conjecture that SAGE(n, k) = n − 1 for any n, and k > n. This conjecture
is supported by Khovanova’s result that SAGE(n, n + 1) = n − 1, the result that
the conjecture holds for n = 2, as well as we prove later in this section, that the
conjecture holds for n = 3. With this conjecture, for a Line of Sages problem with
n participants and k > n colors, we call a strategy that guarantees n − 1 correct
guesses a successful strategy.

3.2. Denoting Successful Strategies. Let’s construct a successful strategy for
the particular case of 3 participants and 5 colors. We begin by creating participant
1’s strategy. Consider the 20 possibilities that participant 1 may see. The first
number in the ordered pair represents participant 2’s hat color; the second number
represents participant 3’s hat color.

(1,0) (2,0) (3,0) (4,0)
(0,1) (2,1) (3,1) (4,1)
(0,2) (1,2) (3,2) (4,2)
(0,3) (1,3) (2,3) (4,3)
(0,4) (1,4) (2,4) (3,4)
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We want to guarantee that participants 2 and 3 can always call their hat color
correctly. So, participant 1 cannot be ambiguous. For example, suppose if partici-
pant 1 sees (1,0), then participant 1 calls “4”; also, if participant 1 sees (2,0), then
participant 1 calls “4” also. Now, when participant 2 sees that participant 3 has
hat color 0 and hears “4”, there are still two possibilities for what his own hat color
is. We want to avoid this from happening, and thankfully, it is possible. Below is
one of many solutions.

(0,1,2) (0,2,1) (0,3,4) (0,4,3)
(1,0,3) (1,2,4) (1,3,0) (1,4,2)
(2,0,4) (2,1,3) (2,3,1) (2,4,0)
(3,0,2) (3,1,4) (3,2,0) (3,4,1)
(4,0,1) (4,1,0) (4,2,3) (4,3,2)

The above table is a condensed way to write each participant’s strategy. Let
i ∈ (1, 2, 3). Notice that if we ignore the i-th entry in each ordered triple, then
the 20 ordered pairs that remain are the 20 possibilities for what participant i sees
and hears. So, based on the ordered pair of what participant i sees and hears, he
guesses the i-th entry in the appropriate ordered triple. Such strategies guarantees
correct answers from participants 2 and 3.

We can see this strategy in action in an example. Suppose that participant 1
wears hat color 2, participant 2 wears color 1, and participant 3 wears color 0. We
can express this color configuration of hat colors shortly as an ordered triple (2, 1, 0).
And so, participant 1, sees two colors in front of him: (1, 0). In the table above,
there is only one ordered triple for which coordinates 2 and 3 are (?, 1, 0), namely
(4, 1, 0). And so, in accordance to the strategy above, participant 1 guesses “4.”
Now, participant 2 hears the guess 4 from participant 1, and sees that participant
3 is wearing color 0. And again, there is only one ordered triple in the table of the
form (4, ?, 0), namely (4, 1, 0), so participant 2 guesses “1.” Finally, participant 3
hears two guesses: (4, 1). And again, ther eis only one ordered triple in the table of
the form (4, 1, ?), namely (4, 1, 0). So, participant 3 guesses “0.” In this example,
participants 2 and 3 correctly guess their hat colors.

3.3. Primary Result.

Theorem 3.3.1. SAGE(3, k) = 2 for k > 3.

Proof. Consider the problem of 3 people, 5 colors. We would like to make 20 3-
tuples such that when the ith element of each tuple is removed, the remaining
2-tuples are distinct. In other words, we would like to fill in the 20 blanks here.
Note that if any 2 numbers in the same row are the same, then when the 1st element
of each tuple is removed, there will be some identical 2-tuples. Similarly, if any 2
numbers int he same column are the same, then when the 2nd element of each tuple
is removed, there will be some identical 2-tuples.

(1,0, ) (2,0, ) (3,0, ) (4,0, )
(0,1, ) (2,1, ) (3,1, ) (4,1, )
(0,2, ) (1,2, ) (3,2, ) (4,2, )
(0,3, ) (1,3, ) (2,3, ) (4,3, )
(0,4, ) (1,4, ) (2,4, ) (3,4, )

Seeing a form like this suggests converting this into a Latin square that we have
to fill in:
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0
1

2
3

4

As an example, look at the cell in the top right. Either a 1, 2, or 3 can be placed
in that cell in the strategy table, as well as in the Latin square. This equivalence
between strategies and Latin squares generalizes. That is, the problem of filling in
a k by k Latin square, where the diagonal is already filled as above, is equivalent
to the Line of Sages problem for 3 people and k colors.

For odd k, the Latin square has a linear construction. If we create a “coordinate
axis” around the Latin square, then we can fill in the cells by the function f(x, y) ≡
2x− y (mod k). The case for k = 5 colors is shown below.

x 0 1 2 3 4
y
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

For even k, the construction is not linear, but is based off the odd k construction.
We take the Latin square of order k− 1, where f(x, y) = 2x− y as before. We will
take k = 6 as an example. First, we will show that the colored numbers are an
arrangement of 0, 1, · · · , k − 1.

0 2 4 1 3
4 1 3 0 2
3 0 2 4 1
2 4 1 3 0
1 3 0 2 4

5

The colored numbers are in cells of the form (i, i + 1 (mod k)), where i ∈
{0, 1, · · · , k − 1}. The number in the cell is

f(i, i+ 1 (mod k)) ≡ 2i− (i+ 1) ≡ i− 1 (mod k)

As i ranges from 0 to k−1, i−1 (mod k) also ranges from 0 to k−1. Therefore
the colored numbers are an arrangement of 0, 1, · · · , k−1. What this means is that
we can now copy these colored numbers into a new row and column, and that new
row and column will still be Latin:

0 2 4 1 3 2
4 1 3 0 2 3
3 0 2 4 1 4
2 4 1 3 0 0
1 3 0 2 4 1
1 2 3 4 0 5
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Finally, we replace the original colored numbers with k’s (in this case, 5’s) and
also put a k in the lower right corner, which finishes the construction. Thus, we
have shown that there exists a k by k Latin square where the diagonal is filled in
increasing order.

0 5 4 1 3 2
4 1 5 0 2 3
3 0 2 5 1 4
2 4 1 3 5 0
5 3 0 2 4 1
1 2 3 4 0 5

Since, such Latin squares can be converted to successful strategies for 3 partici-
pants and k colors, then SAGE(3, k) ≥ 2. Also, we know SAGE(3, k) ≤ 2, because
the adversary can always force the first person in line to be incorrect. Thus, we
have shown that SAGE(3, k) = 2, as desired. □

3.4. Further Results. So far we’ve constructed successful strategies using Latin
squares. We can also use Steiner systems to construct successful strategies. Let’s
consider SAGE(4, 8) as an example. The Steiner system S(3, 4, 8) is a family of
subsets of {1, 2, . . . , 8} of size 4 (“blocks”). Every possible subset of size 3 is in
exactly one block:

(1,2,4,8) (3,5,6,7)
(2,3,5,8) (1,4,6,7)
(3,4,6,8) (1,2,5,7)
(4,5,7,8) (1,2,3,6)
(1,5,6,8) (2,3,4,7)
(2,6,7,8) (1,3,4,5)
(1,3,7,8) (2,4,5,6)

Now to construct our successful strategy, for each of the above 14 blocks, we take
every permutation of it. This gives us 14 ∗ 24 = 336 tuples.

For each participant, they will hear/see an ordered 3-tuple. As a property of
the Steiner system, the unordered set of 3 elements in this 3-tuple is in exactly one
of the 14 blocks. There is exactly one permutation of that block which has the
elements of the 3-tuple in the correct order.

As an example, suppose participant 2 hears participant 1 say “5”, and sees
participants 3 and 4 wearing colors 6 and 7, respectively. So, we must find a tuple
of the form (5, ?, 6, 7). The only block containing the set (5, 6, 7) is (3, 5, 6, 7). So,
the only permutation among the 336 tuples that matches is (5, 3, 6, 7). Therefore
participant 2 should say “3”.

In general, a Steiner system S(n − 1, n, k) can be transformed into a successful
strategy for SAGE(n, k). By Keevash’s result on Steiner systems [4], for every n,
there are infinitely many k such that S(n− 1, n, k) exists. Alas, infinitely many k
doesn’t mean all k.
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